
PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 1

TCP-UDP-IP STACK 10G V2.0

IP Product Datasheet

PD001

Version 1.0

December 01, 2021

 Key Features

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 2

Table of Contents

Introduction ...3

Key Features ...3

IP Specification ...4

MAC Parser ...4

IP Parser ...5

ICMP/Echo Reply ..5

ARP Decoder/Reply ..5

ARP Cache/Request ..5

UDP Transmitter ...6

UDP Receiver ..7

TCP Server/Client ..7

Performance ...8

Simulation Setup ...8

Latency ...8

Throughput ...10

TCP robustness ...13

Resource Utilization ..15

Port Descriptions ..16

Design Guidelines ...22

Clocking ..22

Reset ..22

Axis basic handshake ..22

UDP TX Interface ..23

UDP RX Interface ..24

TCP Commands Interface ..24

TCP Opening procedure ..25

TCP Closing procedure ..25

 Key Features

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 3

Introduction

Modern embedded systems are requiring more and more IO bandwidth. High-speed data

transport might be an issue if a sufficiently powerful CPU is not available in a system.

Hopefully, this is not a problem anymore if the high-speed data transport task is fully

offloaded in a dedicated hardware. And the IPCTEK's ten-gigabit processor-less Internet

TCP/UDP/IP protocol stack can be a good answer for the problem. The whole ten-gigabit

TCP/UDP/IP protocols are implemented within a tiny footprint on the FPGA, which makes

the IP core perfectly suitable for either prototyping applications or industrial products.

The UDP/IP stack is designed to achieve a near-line-rate throughput performance. An

innovative architecture using a two-level cache for the MAC-IP address routing table (RT)

allows one UDP transmitter instance to support up to 8 different destinations without having

to consult the main RT each time the destination changes. As for the TCP/IP stack, slow start,

congestion avoidance, duplicate ACK detection, fast retransmission and out-of-order packets

reassembling techniques are implemented. This offers both the reliability and an

outstanding throughput performance to a connection. As long as the TCP transmitter (TX)

buffer covers the packet round trip time (RTT), a near-line-rate throughput is achieved.

Key Features

▪ Compliant to IEEE 802.3 Ethernet packet encapsulation. IP version 4 is supported.

▪ Echo Reply, ARP, UDP transmitter, UDP receiver and TCP server/client are supported.

▪ One instance of the UDP transmitter supports up to 8 different destinations without

reducing the global throughput thanks to a two-level ARP cache implementation.

▪ The UDP TX latency is equal to 22 clock periods (140.8 ns). A TX throughput of 9.88 Gbps

is achieved with 8950-byte packets. The UDP RX latency is 18 clock periods (115.2 ns).

▪ A TCP segment takes 12 clock periods (76.8 ns) to go through the whole TX stack, and 26

clock periods (166.4 ns) for the RX stack. With 8936-byte segments, the TCP TX achieves

a throughput of 9.85 Gbps. This throughput performance is sustained as long as the TX

buffer size is larger than the packet round trip time. A TCP server can be switched to a

TCP client and vice versa in real time.

▪ TCP Slow Start, Duplicate ACK Detection, Fast Retransmission and Out-of-order packets

reassembling techniques are implemented for an optimum TCP transmission.

▪ Jumbo frame is supported.

▪ The IP core is designed to directly interface with the Xilinx 10G/25G Ethernet

Subsystem. The AXI4 Stream interface is used for seamless integration.

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 4

IP Specification

The ten-gigabit TCP/UDP/IP stack shares the same architecture of the IPCTEK's one-gigabit

TCP/UDP/IP stack. The IP core global block diagram is shown in Figure 1. The IP core consists

of the following key components: MAC Parser, IP Parser, ARP Decoder/Reply, ARP

Cache/Request, ICMP/Echo Reply, UDP Transmitter, UDP Receiver and TCP Server/Client.

Figure 1- Global architecture block diagram

MAC Parser
The MAC Parser component parses MAC header fields and filters MAC packets by analyzing

the MAC destination address field. Either broadcast packets or packets whose destination

Update

tcptx_s_axis

udp RX interface

tcprx_m_axis

icmp_m_axis
(reserved)

udp TX interface

tcp command
interface

mac_m_axis

mac_s_axis
MAC Parser IP Parser

ICMP
Echo Reply

ARP Decoder
ARP Reply

ARP Cache
ARP Request

UDP Receiver

TCP Session
Manager

TCP Receiver
Engine

TX
 A

rb
it

ra
ti

o
n

Routing Table
Access

Arbitration

UDP
Transmitter

Control signals

TCP
Transmitter

Engine
TCP Session

RX path

TX path

Control path

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 5

address matches the component's MAC address are passed to higher-layer protocols. When

the promiscuous mode is activated, all packets are accepted.

IP Parser
The IP Parser component carries out the following jobs.

• Verify the IP header CRC.

• Parse all the fields in the IP header.

• Pass payload data to higher-layer protocols.

Packets with a wrong CRC value are discarded. Either broadcast packets or packets whose

destination IP address matches the component's IP address are accepted.

When a packet is not an IP packet, it is passed to other protocol parsers such as the ARP

decoder module.

In this version, the promiscuous mode is reserved.

ICMP/Echo Reply
The component processes ICMP packets. After the type and the code of a message are

identified, the payload is sourced to its axis master interface icmp_m_axis (Important note:

this functionality is reserved for future version. For now this interface should not be used).

Echo request message is however an exception. When an echo request is detected, it is

passed to the Echo Reply module which then responds to the request.

ARP Decoder/Reply
In IP version 4, a neighbor's MAC address is discovered using the ARP protocol. The ARP

decoder component permanently listens to ARP packets coming from the MAC Parser. When

an ARP request is detected, an ARP response message is then generated. When an ARP

response or a gratuitous ARP message is received, the component parses the MAC address

and the IP address fields. This pair of MAC address and IP address will be stored in a Routing

Table managed by the ARP Cache component.

At startup or after a reset event, the component automatically sends out a gratuitous ARP

message.

ARP Cache/Request
This module establishes and maintains the IP address - MAC address mapping using the ARP

protocol. A routing table is stored in a true dual port RAM. Port A is controlled by a Finite

State Machine (FSM) which takes care of RT entry update requests via the RT_update

interface when an ARP response packet has been received. The FSM also refreshes the

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 6

routing table by periodically sending ARP request packets for "old" entries. "Too old" entries

are also removed, leaving place for machines that recently joint the network.

A routing table entry (MAC-IP address pair) can be consulted by using the RT_Request

interface of the ARP Cache component. Port B of the RAM is controlled by an FSM which

takes care of this interface. Upon request, this FSM searches for the entry in the routing

table. If the corresponding MAC address is found, it responds with an ACK signal. Otherwise

it responds with a NACK signal and then sends out an ARP request packet. If the IP address is

not on the same subnet mask, the FSM searches for the gateway's MAC address.

UDP Transmitter
The component has three principle blocks.

• A ping-pong RAM which stores input UDP packets: one packet in, one packet out for

minimizing the resource utilization and maximizing the throughput.

• A routing table controller which maintains the IP address - MAC address mapping. It

also has its own local ARP cache.

• An input FSM and an output FSM which control the input and output flows.

The routing table controller has its own local ARP cache which maintains up to 8 MAC-IP

address pairs. When a transmitted UDP packet has been fully received and stored in the

RAM, the input FSM requests the routing table controller for the destination MAC address. If

it is found in the local cache, the routing table controller responds an ACK signal to the UDP

TX interface. If the requested information is not found in the local cache, the routing table

controller sends a request to the main ARP Cache. If an ACK signal along with the destination

MAC address is received from the main ARP Cache, the routing table controller registers the

destination MAC address, updates its local cache and transfers the ACK signal to the UDP TX

interface. If a NACK signal is received from the main ARP Cache, the routing table controller

also responds to the UDP TX interface with an NACK signal and the packet is discarded.

When the routing table of the main ARP Cache is large, sometimes the time it takes to find

an entry might be long. For a 64-entry routing table, it may takes up to 1228.8 ns to find an

entry. In conventional implementation, one UDP TX instance is used for only one destination

in order to avoid consulting the main ARP Cache for each packet (in fact we have to consult

only once at the beginning). An innovative architecture with a local ARP Cache allows one

instance of the UDP Transmitter to support up to 8 different destinations without having to

consult the main ARP Cache every time the packet's destination changes. This

implementation is extremely advantageous in terms of resource utilization and throughput

performance, given that the local Cache read latency is only one clock period.

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 7

UDP Receiver
The UDP Receiver component does the following jobs.

• Parse the source port and destination port fields of the UDP header.

• Optionally verify the CRC of the packet.

• Pass payload data to the user interface.

At the output of the component, UDP packets can be distinguished by the source port and

destination port values. A simple port filter can be implemented to extract the desired

datagram.

Available as an option, the UDP Receiver can also verify the UDP checksum of the packet and

passes this information to the user interface. This functionality can be useful when users are

interested in the data integrity of a transmission even if there is no retransmission

mechanism of the UDP protocol. Statistical information concerning the number of packets

with wrong CRC values is also available.

TCP Server/Client
The TCP Server/Client module is composed of three principle blocks: a Session Manager, a TX

Engine and an RX Engine.

The Session Manager manages the three-way-handshake protocol in order to properly

establish and close a TCP connection. This module also resets the TX and the RX engines as

long as the connection is not established. Upon a successful connection establishment, this

module indicates the initial TX sequence number to the TX Engine and the initial

acknowledgement number to the RX Engine before releasing their reset pins. The Session

Manager also manages the closing procedure when either the peer initiates a FIN message

or the async_tcptx_abort_in signal is triggered by the user.

The TX Engine manages the transmit interface, the sending state machine, Slow Start,

Congestion Avoidance, Duplicate ACK detection, Fast Retransmission and Retransmission

mechanisms. The sending state machine is carefully designed such that the gap between

consecutive transmitted segments is minimized in order to maximize the transmission

throughput.

The RX Engine manages segments coming from the peer, updates the peer's ACK number to

report to the TX Engine and parses the payload data before sourcing them to the user via the

tcprx_m_axis interface. The RX Engine also holds a buffer in order to handle out-of-order

packet arrival events.

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 8

Performance
The IP core’s performance described in this section is obtained with a very specific simulated

network condition and with specific IP core’s parameters. When the IP core is used in users’

system, IPCTEK does not guarantee that the same performance will be achieved, given that

the users’ network condition and the IP core’s parameters will be changed.

If the latency and/or the throughput performance is critical in users’ systems, it is

recommended to request to an evaluation version of the IP core and do the test in the real

system.

Simulation Setup
In order to evaluate the IP core performance, a test bench with two FPGA IP instances is

implemented. One instance serves as a transmitter and the other serves as a receiver.

We place a "switch emulator" module in between the two IP core instances in order to

emulate three basic events as follow.

• Switch processing delay to emulate different values of the round trip time.

• Packet loss event.

• Out-of-order arrival event.

The simulation synoptic scheme is shown in Figure 2.

Figure 2- Simulation setup synoptic scheme.

Latency
For TCP TX, TCP RX and UDP TX interfaces, the latency depends on the frame length

(datagram length in case of UDP and segment length in case of TCP). For the sake of

simplicity, for these interfaces we redefine the latency as follow: the latency of a module is

measured by the delay from the last valid data of an input frame to the first valid data of the

output frame. In the following paragraphs, we use this definition for the measurement of

latency values. If users are interested in the conventional latency (first data of an input

frame to the first data of the output frame), the frame length must be added.

mac_m_axis

mac_s_axis

mac_s_axis

mac_m_axis

TCP/UDP/IP
10G Stack

DUT 1

Switch
1-->2

Switch
2-->1

TCP/UDP/IP
10G Stack

DUT 2

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 9

UDP TX Latency
As shown in Figure 3, the UDP TX path latency is measured to be equal to 140.8 ns, which is

equivalent to 22 clock periods. For the conventional latency calculation, user must take into

account an additional latency due to the UDP frame length. For a frame of size N bytes, the

total latency is equal to (N/8+22)*6.4 ns. For example, for a 1440-byte frame, the total

latency is equal to (1440/8+22)*6.4 = 1292.8 ns.

Figure 3- UDP TX latency simulation timing diagram. Magenta waveforms - Datagram parameters. Blue
waveforms - TX data interface. Black waveforms - MAC transmit master interface.

UDP RX Latency
Contrarily to the UDP TX, the UDP RX latency does not depend on the UDP datagram length.

The conventional latency can be calculated as the delay from the first input valid byte to the

first output valid byte as shown in Figure 4. The UDP RX latency is equal to 115.2 ns, which is

equivalent to 18 clock periods.

Figure 4- UDP RX latency simulation timing diagram. Magenta waveforms - MAC receive slave interface.
Green waveforms - Received datagram parameters. Blue waveforms - Received data master interface.

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 10

TCP TX Latency
The TCP TX latency is equal to 76.8 ns, which is equivalent to 12 clock periods at 156.25 MHz.

For a segment of size N bytes, the total latency is equal to (N/8+12)*6.4 ns. For example, for

a 1440-byte segment, the total latency is (1440/8+12)*6.4 = 1228.8 ns. The Figure below

shows the timing diagram of the simulation result.

Figure 5- TCP TX latency simulation timing diagram. Magenta waveforms - User transmit slave interface.
Blue waveforms - MAC transmit master interface.

In applications where a low latency is important, users should reduce the segment length on

the transmitter side.

TCP RX Latency
As shown in the simulation timing diagram, the TCP RX path takes 166.4 ns (equivalent to 26

clock periods at 156.25 MHz) to process one segment. For a segment of size N bytes, the

total latency is equal to (N/8+26)*6.4 ns. For example, for a 1440-byte segment, the total

latency is equal to (1440/8+26)*6.4 = 1318.4 ns.

Figure 6- TCP RX latency simulation timing diagram. Magenta waveforms - MAC receive slave interface. Blue
waveforms - Received data master interface.

Throughput

UDP Throughput
For 1450-byte frames, the UDP TX (and RX) throughput is measured to be at 9.36 Gbps.

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 11

Figure 7- UDP TX throughput simulation timing diagram. Payload length 1450 bytes. Magenta waveforms -
datagram parameters. Blue waveforms - transmit data interface. Brown waveforms - Clear-to-send, ACK and

NACK signals. Delta cursors show the transmission time of 10 frames.

For 8950-byte frames, the UDP TX (and RX) throughput is measured to be at 9.88 Gbps.

Figure 8- UDP TX throughput simulation timing diagram. Payload length 8950 bytes. Magenta waveforms -
datagram parameters. Blue waveforms - transmit data interface. Brown waveforms - Clear-to-send, ACK and

NACK signals. Delta cursors show the transmission time of 10 frames.

TCP Throughput
In order to maximize the TCP throughput, the IP core is designed such that segments are

transmitted continuously (within the congestion window imposed by Slow Start and the

receiver window) to the peer as long as the TX retransmission buffer is not full. When an ACK

segment arrives in response to a transmitted segment, the acknowledgement number is

verified in another process in parallel with the transmitter process. Hence, as long as the TX

retransmission buffer covers the packet round trip time, a maximal transmission throughput

can be achieved.

Figure 9 shows the TCP transmission throughput performance (in simulation) in function of

the emulator switch delay value. The throughput is sustained at its maximum value as long

as the TX buffer still covers the packet round trip time. In point-to-point applications where

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 12

two FPGAs are directly connected with SFP+ modules, with a 32-KByte TX buffer, these

maximum throughput values can be easily obtained.

Full Duplex

Figure 9- TCPTX transmission throughput in function of emulator switch delay. Full Duplex. Unidirectional
stream. TX buffer size 32 KBytes. Segment length 1440 bytes.

For a full duplex configuration, 10 Gigabit interface (clock period 6.4 ns), the worst-case

round trip time can be roughly estimated as follow.

• TX Buffer filling delay: 1440 / 8 x 6.4 = 1152 ns

• Emulator switch TX buffer filling delay: 1492 / 8 * 6.4 = 1193.6 ns

• Emulator switch process delay (abscissa value at the figure above), let's take 10000

ns

• RX buffer filling delay: 1492 / 8 * 6.4 = 1193.6 ns

Now we calculate the delay of the return path of the ACK packet.

• Emulator switch RX buffer filling delay: 54 / 8 * 6.4 = 43.2 ns

• Emulator switch process delay: 10000 ns

• Transmitter's RX buffer filling delay: 54 / 8 * 6.4 = 43.2 ns

Estimated worst-case round trip time is the sum of all these delay values: 23626 ns.

It is noted that in practice the round trip time value might be larger than the estimated value

described above because of the PHY and the MAC's latency. With a 32-KByte TX buffer,

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Th
ro

u
gh

p
u

t
(M

b
p

s)

Emulator Switch delay (us)

Full duplex. Unidirectional stream. TX buffer 32 KBytes9170

Estimated RTT 24 us

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 13

theoretically the maximum throughput can be achieved as long as the packet round trip time

is smaller than 32768 / 8 * 6.4 = 26215 ns.

When jumbo frames are used, a near-line-rate throughput is achieved as shown in Figure 10.

Figure 10- TCPTX transmission throughput in function of emulator switch delay. Full Duplex. Unidirectional
stream. TX buffer size 64 KBytes. Segment length 8936 bytes.

TCP robustness
In the following paragraphs we will analyze an important problem which arises especially in

networks with high congestion: out-of-order packet arrival.

Out-Of-Order arrival event
When network traffic load gets high, it is possible that two (or multiple) TCP segments arrive

at the destination in reverse order. The segment that was transmitted first may arrive after

the segment that was transmitted later. In conventional FPGA TCP/IP stack implementation,

out-of-order segments are usually discarded, resulting on a retransmission on the

transmitter side. In such an implementation strategy, the transmission throughput can be

highly degraded.

Available as an option, the IP core can instantiate a buffer and necessary logics to handle

out-of-order packet arrival events. Instead of discarding out-of-order packets, they are

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

1 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100

Th
ro

u
gh

p
u

t
(M

b
p

s)

Emulator Switch delay (us)

Full Duplex. Unidirectional stream. TX buffer 64 Kbytes9850

Estimated RTT 42 us

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 14

stored in a buffer to be processed later. Once the missing segments arrive and fill the gap of

the reception bytes stream, the buffered segments will be released. This way, the

transmitter does not have to retransmit anything, and an excellent transmission throughput

can be preserved regardless the out-of-order arrival turbulence.

Figure 11 illustrates the transmission throughput performance under out-of-order events in

full duplex configuration. The throughput performance of both conventional implementation

where out-of-order segments are discarded and the implementation where these segments

are wisely handled are shown. In the abscissa we have the out-of-order events frequency

(percentage) which means the frequency at which an out-of-order event occurs. For

example, a value of 20% means that there is one out-of-order segment out of five

transmitted segments. According to the simulation results, we can clearly see that when

correctly handled, the out-of-order packet arrival disturbance has no significant impact on

the transmission throughput. However, in a conventional implementation, the throughput is

excessively reduced even with a small amount of out-of-order segments.

Full Duplex

Figure 11- TCP transmission throughput in function of out-of-order arrival event frequency. Full duplex. TX
buffer 32 KBytes. Emulator switch delay 10 us. Segment length 1440 bytes.

Important Note: The out-of-order arrival handling option must only be used when the

transmitter does not change the segments’ size upon retransmission, which is the case for

the IPCTEK’s IP core. Hence, when the user uses two instances of the IP core to implement a

TCP client and a TCP server, this option can be used. However, if the user is not sure about

the implementation of the TCP peer, it is mandatory to disable this out-of-order handling

option.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

20,0 16,7 14,3 12,5 11,1 10,0 9,1 8,3 7,7 7,1 6,7 6,3 5,9 5,6 5,3 5,0 4,0 3,3 2,9 2,5 2,2 2,0

Th
ro

u
gh

p
u

t
(M

b
p

s)

Out-Of-Order Event Frequency (%)

Out-Of-Order Handling ON

Out-Of-Order Handling OFF

7935

9054

647

2940

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 15

Resource Utilization
Below is the resource utilization after synthesis on the KCU105 board target.

Note: The out-of-order handling buffer is disabled.

Synthesis 1 - UDP only

Parameters Configuration 1 Configuration 2

MAC MTU 1500 9000

Number of UDP TX 1 1

Number of UDP RX 1 1

Number of TCP connection 0 0

LUTs utilization 7009 7357

Registers utilization 6899 7132

Block RAM Tile utilization 6.5 19

Synthesis 2 - UDP and TCP

Parameters Configuration 1 Configuration 2

MAC MTU 1500 1500

Number of UDP TX 1 1

Number of UDP RX 1 1

Number of TCP connection 1 2

TCP TX buffer size 16 KBytes 16 KBytes

TCP RX buffer size 16 KBytes 16 KBytes

LUTs utilization 11806 15784

Registers utilization 10475 12885

Block RAM Tile utilization 19 29

Parameters Configuration 3 Configuration 4

MAC MTU 1500 9000

Number of UDP TX 1 1

Number of UDP RX 1 1

Number of TCP connection 1 1

TCP TX buffer size 32 KBytes 64 KBytes

TCP RX buffer size 32 KBytes 64 KBytes

LUTs utilization 11860 12123

Registers utilization 10485 10545

Block RAM Tile utilization 26 64

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 16

Port Descriptions
This section describes the IP ports’ functionality.

Port name Bitwidth Dir Description

Common parameters

mac_tx_clk 1 in
TX path clock. All interfaces except the mac_s_axis are
synchronous to this clock.

mac_rx_clk 1 in
RX MAC slave interface clock. The mac_s_axis interface is
synchronous to this clock.

arst_n 1 in
Asynchronous reset. To reset the IP, this signal must be held
low for at least 2 periods of the mac_tx_clk.

promicuous_mode_in 1 in Promiscuous mode. This signal is reserved for future use.

mac_addr_in 48 in

Component's MAC address. Convention: Read the MAC
address from the LSB octet to the MSB octet. E.g.
0xBBAA99887766 stands for conventional MAC address
66:77:88:99:AA:BB

subnet_mask_in 32 in
Subnet mask. Because the IP address is read from LSB to
MSB, e.g. for a 12-bit subnet mask 255.240.0.0 the
subnet_mask_in = 0xF0FF

ip_addr_in 32 in
Component's IP address. Read the IP address from the LSB
octet to the MSB octet. For example 0x0201A8C0 stands for
192.168.1.2

gateway_ip_addr_in 32 in
Gateway’s IP address. Read the IP address from the LSB
octet to the MSB octet.

echo_rep_enable_in 1 in
Echo reply enable signal. This signal must be asserted after
the component's IP address has been allocated.

rt_old_entry_microsec_thre
shold_in

64 in
Timestamp threshold after which a routing table entry need
to be refreshed. Unit: microsecond.

rt_entry_to_rm_microsec_t
hreshold_in

64 in
Timestamp threshold after which a routing table entry need
to be removed (too old entry). Unit: microsecond.

rt_refresh_timeout_in 64 in
Routing table refreshment timeout: the period at which the
routing table is refreshed. Unit: microsecond.

ARP_resp_wait_timeout_in 64 in

ARP response waiting timeout. When an ARP request packet
is sent in order to refresh an old entry in the routing table,
the Updating FSM goes to READY_FOR_UPDATE state
waiting for an ARP response message. This port defines the
timeout duration of this state. A value larger than the max
Round Trip Time should be assigned to this port. At the
timeout event, the FSM continues to refresh other entries in
the routing table. Unit: microsecond.

RX Slave axis interface with the Ethernet MAC
mac_s_axis_tdata 64 in MAC RX data.

mac_s_axis_tvalid 1 in MAC RX data valid.

mac_s_axis_tlast 1 in MAC RX last byte in a frame.

mac_s_axis_tkeep 8 in
MAC RX data valid mask of the data word. Each bit indicates
the validity of one byte.

mac_s_axis_tuser 1 in

MAC RX data error, indicating an error event of a packet.
This signal is valid only when both mac_s_axis_tvalid and
mac_s_axis_tlast signals are asserted.
'1' Packet has error.
'0' Packet without error.

TX Master axis interface with the Ethernet MAC

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 17

mac_m_axis_tdata 64 out MAC TX data.

mac_m_axis_tvalid 1 out MAC TX data valid.

mac_m_axis_tready 1 in MAC TX data ready given by the Ethernet MAC.

mac_m_axis_tlast 1 out Indicate the last byte in a TX MAC frame.

mac_m_axis_tkeep 8 out
MAC TX valid mask of the data field. Each bit indicates the
validity of one byte.

mac_m_axis_tuser 1 out
Underrun indication. This signal is asserted when an
underrun event occurs.

ICMP message interface (reserved)
icmp_mac_src_addr_out 48 out MAC address of the sender of this packet.

icmp_mac_dest_addr_out 48 out MAC address of the destination of this packet.

icmp_ip_src_addr_out 32 out IP source address of the output datagram.

icmp_ip_dest_addr_out 32 out
IP destination address. Normally this corresponds to our IP
address, or the broadcast IP address.

icmp_type_out 8 out
ICMP type. This signal is valid from the first until the last
tvalid (during a whole packet)

icmp_code_out 8 out
ICMP code. This signal is valid from the first until the last
tvalid (during a whole packet)

icmp_m_axis_tdata 64 out ICMP data. IP header and 64 bits of original packet.

icmp_m_axis_tvalid 1 out ICMP data valid.

icmp_m_axis_tlast 1 out ICMP last byte indicator.

icmp_m_axis_tkeep 8 out Data valid mask.

icmp_m_axis_tuser 1 out

‘1’ → Good frame (CRC check passed).
‘0’ → Bad frame (CRC checked not passed or propagated
error from the MAC).
This signal is valid when both icmp_m_axis_tvalid and
icmp_m_axis_tlast signals are asserted.

UDP TX interface

udptx_src_ip_addr_in 32xNB_TXs in
UDP source IP address. Read the IP address from the LSB
octet to the MSB octet. Bitwidth of 32 bits for each TX
instance. NB_TXs is the number of TX instances.

udptx_dest_ip_addr_in 32xNB_TXs in
UDP destination IP address. Read the IP address from the
LSB octet to the MSB octet. Bitwidth of 32 bits for each TX
instance.

udptx_src_port_in 16xNB_TXs in UDP source port. Bitwidth of 16 bits for each TX instance.

udptx_dest_port_in 16xNB_TXs in
UDP destination port. Bitwidth of 16 bits for each TX
instance.

udptx_arp_ovrd_mode_in NB_TXs in

ARP override mode. In this mode the module is forced to
use the user-defined destination MAC address without
requesting the routing table. This can be used for example
by the DHCP client component during the address
acquisition process. 1 bit for each TX instance.
‘1’ → Override mode
‘0’ → Normal mode

udptx_arp_ovrd_dest_mac_
addr_in

48xNB_TXs in
User-defined destination MAC address used in the ARP
override mode. Bitwidth of 48 bits for each TX instance. The
MAC address is read from the LSB octet to the MSB octet.

udptx_enable_in NB_TXs in
UDP TX Enable signal. 1 bit for each TX instance.
‘1’ → Enabled
‘0’ → Disabled

UDP TX data interface

udptx_usr_din 64xNB_TXs in TX data. Bitwidth of 64 bits for each TX instance.

udptx_usr_dvalid_in NB_TXs in TX data valid. 1 bit for each TX instance.

udptx_usr_data_last_in NB_TXs in Indicate the last byte of an UDP packet. 1 bit for each TX

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 18

instance.

udptx_usr_data_keep_in 8*NB_TXs in

Data byte mask. Bitwidth of 8 bits for each TX instance. Each
bit corresponds to one data byte lane.
‘1’ → The byte lane is valid
‘0’ → The byte lane is invalid

udptx_usr_data_cts_out NB_TXs out

Clear to send signal. Ready for the reception of data. When
this signal is asserted, the UDP TX FIFO has enough free
room to receive a whole packet whose size is limited by the
MAC MTU value, after excluding the IP and UDP headers.

udptx_usr_data_ack_out NB_TXs out
If a packet is successfully sent to the Ethernet MAC, the
module responds with an ack signal. In this case this signal is
asserted '1' for one clock period. 1 bit for each TX instance.

udptx_usr_data_nack_out NB_TXs out

If a packet is discarded because the destination MAC
address is unknown by the routing table, the UDP TX
module responds with a nack signal. In this case this signal is
asserted '1' for one clock period. 1 bit for each TX instance.

UDP Receiver interface

udp_checksum_cal_bypass_in 1 in
Bypass the checksum calculation at the receiver.
‘1’ → Bypass the checksum calculation
‘0’ → The checksum is calculated by the receiver

udprx_mac_src_addr_out 48 out
MAC address of the sender of this packet. Read the MAC
address from the LSB octet to the MSB octet.

udprx_mac_dest_addr_out 48 out
MAC address of the destination of this packet. Read the
MAC address from the LSB octet to the MSB octet.

udprx_ip_src_addr_out 32 out
IP address of the sender of this packet. Read the IP address
from the LSB octet to the MSB octet.

udprx_ip_dest_addr_out 32 out
IP address of the receiver of this packet. Read the IP address
from the LSB octet to the MSB octet.

udprx_src_port_out 16 out UDP source port of this packet.

udprx_dest_port_out 16 out UDP destination port of this packet.

These 6 signals above are valid from the first tvalid to the
last tvalid of a received frame (they stay valid for a whole
UDP frame)

udprx_m_axis_tdata 64 out UDP packet payload data.

udprx_m_axis_tvalid 1 out UDP payload data valid.

udprx_m_axis_tlast 1 out Indicate the last byte in an UDP payload packet.

udprx_m_axis_tkeep 8 out Data valid byte mask.

udprx_m_axis_tuser 1 out

This signal is asserted along with the udprx_m_axis_tvalid
and the udprx_m_axis_tlast signals if the UDP checksum is
present and its value is correct. This is useful for data
integrity verification.
‘1’ → good CRC.
‘0’ → bad CRC.

udprx_nb_pck_err_out 32 out
Number of packets with propagated error. This error is
propagated from the MAC. In this version this signal is
reserved.

udprx_nb_pck_cs_err_out 32 out Number of packets with checksum error.

udprx_nb_pck_err_total_out 32 out
Total number of packets with error. In this version this
signal is reserved.

TCP Connection parameters interface

tcprx_out_of_order_handle
_enable_in

1 in
Out-of-order arrival event handling enable.
‘1’ → Handle out-of-order arrival events
‘0’ → Do not handle out-of-order arrival events

tcptx_MSS_in 16 in Maximum segment size in number of bytes. This is used

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 19

during the connection handshake and for the TX segment
descriptor construction.

tcptx_use_user_defined_re
TX_value_in

1 in

Indicate whether the user-defined or the estimated round
trip time value is used for the retransmission timer.
‘1’ → User-defined value is used
‘0’ → Estimated value is used

tcptx_user_defined_reTX_ti
meout_usec_in

32 in
User-defined retransmission timeout in microseconds.

tcptx_init_seq_num_in 32 in
Our initial sequence number. Used in the SYNC message in
the three-way-handshake TCP connection procedure.

tcptx_srv_mode_in
NB_TCP_C

NTNS
in

Server/Client mode selection.
‘1’ → Server mode.
‘0’ → Client mode.
NB_TCP_CNTNS is the number of connection instances. 1 bit for
each instance.

tcptx_tcp_src_port_in
16xNB_TCP

_CNTNS
in

TCP source port (our port). Bitwidth of 16 bits for each
connection instance.

tcptx_tcp_dest_port_in
16xNB_TCP

_CNTNS
in

TCP destination port (peer's port). This is only used when
we are in client mode to indicate the server port to connect
to. Bitwidth of 16 bits for each connection instance.

tcptx_server_ip_addr_in
32xNB_TCP

_CNTNS
in

Server's (peer's) IP address. This is only used when we are in
client mode to indicate the server's IP address. Bitwidth of
32 bits for each connection instance.

TCP Connection commands interface

async_tcptx_open_in
NB_TCP_C

NTNS
in

Asynchronous trigger to open a session. In the server mode,
this command is used to open a server at port
tcptx_tcp_src_port_in then listen to a connection request.
In the client mode, this is used to send a connection request
to the server. 1 bit for each connection instance. Required
duration: at least 2 periods of mac_tx_clk.

tcptx_open_rdy_out
NB_TCP_C

NTNS
out

This signal indicates whether the module is ready for the
open command. 1 bit for each connection instance.

async_tcptx_abort_in
NB_TCP_C

NTNS
in

This command is used to abort the actual connection. 1 bit
for each connection instance. Required duration: at least 2
periods of mac_tx_clk.

tcptx_state_out
4xNB_TCP_

CNTNS
out

Report the state of the connection state machine. 4 bits for
each connection instance.
"0000" => CLOSE
"0001" => RT_REQ
"0010" => WAIT_RT_RESP
"0011" => LISTEN
"0100" => SYNC_RCVD
"0101" => SYNC_SENT
"0110" => ESTAB
"0111" => FIN_WAIT1
"1000" => CLOSE_WAIT
"1001" => FIN_WAIT2
"1010" => LAST_ACK
"1011" => TIME_WAIT
"1100" => IP_ID_REQ
"1101" => SEND
"1110" => TX_CLOSE

tcptx_cntn_established_out
NB_TCP_C

NTNS
out

Indicate whether the connection is established. 1 bit for
each connection instance.

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 20

‘1’ → Connection has been established.
‘0’ → Not connected.

cntn_id_mac_src_addr_out
48*NB_TCP

_CNTNS
out

After the connection establishment, this port reports the
peer's MAC address. 48 bits for each connection. The MAC
address is read from the LSB octet to the MSB octet.

cntn_id_ip_src_addr_out
32*NB_TCP

_CNTNS
out

After the connection establishment, this port reports the
peer's IP address. 32 bits for each connection. The IP
address is read from the LSB octet to the MSB octet.

cntn_id_tcp_src_port_out
16*NB_TCP

_CNTNS
out

After the connection establishment, this port reports the
peer's port. 16 bits for each connection.

cntn_id_tcp_dest_port_out
16*NB_TCP

_CNTNS
out

After the connection establishment, this port reports the
peer's destination port, which is logically equal to our port.
16 bits for each connection.

TCP TX axis data interface

tcptx_s_axis_tdata
64*NB_TCP

_CNTNS
in

TCP TX data. Bitwidth of 64 bits for each connection
instance.

tcptx_s_axis_tvalid
NB_TCP_C

NTNS
in TCP TX data valid. 1 bit for each connection instance.

tcptx_s_axis_tready
NB_TCP_C

NTNS
out

TCP TX ready to receive data. Note that a data word (8
bytes) is only consumed by the module when both tvalid
and tready signals are asserted. 1 bit for each connection
instance.

tcptx_s_axis_tlast
NB_TCP_C

NTNS
in

User can assert tlast signal to indicate an end-of-segment
event. When the module receives tlast, it constructs right
away a TX descriptor and tries to send the segment right
after. When tlast is not asserted during TX, the module
consumes tcptx_MSS_in bytes before constructing a
descriptor to send the segment. When tlast is asserted, the
segment size can be smaller than the tcptx_MSS_in value.
This is useful in situations where we want to send small
segments to the other end with a minimum latency. 1 bit for
each connection instance.

tcptx_s_axis_tkeep
8*NB_TCP_

CNTNS
in Data valid byte mask. 8 bit for each connection instance.

TCP RX axis data interface

tcprx_m_axis_tdata
64*NB_TCP

_CNTNS
out

TCP RX data. Bitwidth of 64 bits for each connection
instance.

tcprx_m_axis_tvalid
NB_TCP_C

NTNS
out TCP RX data valid. 1 bit for each connection instance.

tcprx_m_axis_tlast
NB_TCP_C

NTNS
out

TCP RX tlast signal indicating the last byte of a segment. 1
bit for each connection instance.

tcprx_m_axis_tready
NB_TCP_C

NTNS
in

TCP RX ready to receive data. The TCP RX module supports
back pressure (thanks to receiver FIFOs) when the user’s
logic is not ready to consume the RX data. For an optimum
TCP transmission throughput, this signal should always be
asserted. 1 bit for each connection instance.

tcprx_m_axis_tkeep
8*NB_TCP_

CNTNS
out Data valid byte mask. 8 bit for each connection instance.

TCP debug interface

tcp_congestion_state_out
NB_TCP_C

NTNS
out

Congestion window state machine.
‘0’ → Slow Start.
‘1’ → Congestion Avoidance.
1 bit for each connection instance.

tcp_congestion_wdn_out
16*NB_TCP

_CNTNS
out

Congestion window. Bitwidth of 16 bits for each connection
instance.

 IP Specification

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 21

tcp_TX_engine_nb_bytes_s
ent_out

64*NB_TCP
_CNTNS

out
Number of bytes sent since the last reset. Bitwidth of 64 bits
for each connection instance.

tcp_RTT_usec_out
32*NB_TCP

_CNTNS
out

Estimated RTT value for the TX path. Bitwidth of 32 bits for
each connection instance. Unit: microsecond.

RX_engine_nb_bytes_count
er_out

64*NB_TCP
_CNTNS

out
Number of bytes received since the last reset. Bitwidth of 64
bits for each connection instance.

Miscellaneous
ipc_ip_version 16 out IP version. Should read 0x200.

ipc_ip_demo 1 out
‘1’ → Demo design, the IP stops after 10 minutes.
‘0’ → Released IP.

ipc_ip_mtu 16 out Reflect the MAC MTU parameter.
ipc_ip_nb_tcp_ssn 16 out Reflect the number of instantiated TCP connections.

 Design Guidelines

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 22

Design Guidelines

This section details important guidelines in order to successfully integrate the IP core into

the user FPGA design.

Clocking
In order to achieve a simple and efficient design, internally the design is fully synchronous

with the clock mac_tx_clk. However, the IP core also supports asynchronous TX and RX

paths where the TX clock may be asynchronous to the RX clock. In such an asynchronous

configuration, a FIFO is placed just after the mac_s_axis interface in order to change the

clock domain mac_rx_clk to the clock domain mac_tx_clk. After the FIFO, all the logics are

fully synchronous to only one clock domain, which is the mac_tx_clk. It is important to note

that both transmit path and receive path are synchronous to this clock.

In the user design, the mac_tx_clk is simply connected to the MAC’s transmit path clock and

the mac_rx_clk is connected to the MAC’s receive path clock. As for the user’s logics,

everything is synchronous to the mac_tx_clk due to the FIFO described above.

Reset
After receiving stable clock sources, the IP need to be resetted for a correct functioning. To

do so, the port arst_n need to be held low for at least 2 periods of the mac_tx_clk. It is

noted that this reset port is asynchronous hence the reset signal does not need to be

synchronous to the clock signal. After receiving the reset signal, the IP core generates

necessary different synchronous reset signals to reset different logics.

Axis basic handshake
The MAC slave interface (receiver), MAC master interface (transmitter), TCP TX and TCP RX

interfaces are compliant to the AXI Stream (AXIS) interface. During an AXIS transaction, we

have a master which sources the data and a slave which sinks the data. The function of a

signal in an AXIS interface can be decoded according to its suffix.

• _tdata: this signal contains the data for the transaction.

• _tvalid: this signal indicates that the data is valid.

• _tready: this signal indicates that the slave is ready to sink the data.

• _tlast: this signal indicates that this data is the last in a frame.

• _tkeep: when the bytewidth of a data word is larger than 1, the tkeep signal indicates

which bytes in the word are valid. Each bit in the tkeep signal corresponds to one

byte in the data signal. The LSB bit corresponds to the LSB byte and so on.

 Design Guidelines

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 23

• _tuser: this signal contains additional information concerning the frame.

In order to successfully integrate a component with an AXIS interface into your design, it is

worth taking care of several basic rules.

• The data is only successfully consumed by the slave when both tvalid and tready

signals are asserted.

• The master should never wait for the slave's tready signal to be asserted before

asserting the tvalid signal. This may result in a deadlock situation in some cases.

• User should assert the tlast signal at the end of a frame, especially when handshaking

with the TCP TX interface. When the transmitted segment is small and the tlast signal

is missing, the segment risks not to be sent right away to the other end. This is

because when the tlast signal is missing, the TCP TX module waits for maximum-

segment-size bytes before constructing a descriptor to send the segment.

The Figure below shows the basic handshake of an AXIS interface.

Figure 12- AXI-Stream basic handshake.

UDP TX Interface
The UDP TX engine works on a per packet basis. The basic state machine that can be used to

interface with the UDP TX engine can be described as follows:

• Step 1: The source and destination IP address, the UDP source and destination port

are placed at the input of the IP core.

• Step 2: Wait until the signal "clear to send" (udptx_usr_data_cts_out) is asserted.

• Step 3: Place the data to the transmit interface, do not forget to assert the equivalent

tlast signal (udptx_usr_data_last_in) to delimit the end of a packet.

• Step 4: Wait for either ACK signal (udptx_usr_data_ack_out) or Not-ACK signal

(udptx_usr_data_nack_out) to be asserted.

• The transmission of one UDP packet is finished. Come back to step 1 to continue the

next packet.

D1 D2 D3 D4 D5

L1 L2 L3 L4 L5

CLK

TVALID

TREADY

TDATA

TLAST

 Design Guidelines

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 24

Figure 13- UDP TX Sending waveforms.

UDP RX Interface
The UDP RX interface sources UDP packets to the user as long as the packet's destination

MAC and IP addresses match those of the FPGA IP core, regardless of the UDP source or

destination port.

Upon receiving an UDP packet, identification information including the source and

destination MAC address, the source and destination IP address, the source and destination

UDP port is placed at corresponding output ports of the FPGA IP core. These values are valid

from the beginning (first assertion of the tvalid signal) until the end (when both tvalid and

tlast signals are asserted) of a received frame. They can be used by the user to filter the

packets of interest. The UDP payload data are sourced to the user by the UDPRX Master AXIS

interface. It is noted that the tready signal is missing in this interface, which means that user

logic must be capable of handling the received frames without any back-pressure

mechanism.

TCP Commands Interface
The TCP TX Slave AXIS interface (tcptx_s_axis) is dedicated for transmitting TCP segments.

For receiving TCP segments, the TCP RX Master AXIS interface (tcprx_m_axis) is used. The

user should rely on the basic handshake in an AXIS channel described above to handshake

with these interfaces.

The TCP engine of the FPGA IP core can be configured either as a TCP server or a client. The

FPGA IP core supports both active and passive TCP opening procedures as described in the

RFC 793. In order to open a TCP server to listen to a client connection request (in server

 Design Guidelines

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 25

mode) or to connect to a server (in client mode), the user should use the TCP command

interface. The TCP opening procedure can be described as follows.

TCP Opening procedure
• Step 1: Configure initial parameters before opening a TCP session:

tcptx_init_seq_num_in to indicate the initial sequence number (0 by default);

tcptx_srv_mode_in to indicate whether we act as a server ('1') or client ('0');

tcptx_tcp_src_port_in to indicate our TCP port; tcptx_tcp_dest_port_in to indicate

the peer's port (peer can be a server or a client, depending on our mode) and

tcptx_server_ip_addr_in to indicate the server IP address (in case we are in the client

mode).

• Step 2: Wait for one clock period of the mac_tx_clk.

• Step 3: wait until the signal tcptx_open_rdy_out to be asserted. The FPGA IP core is

ready to open a TCP session.

• Step 4: Assert the signal async_tcptx_open_in to trigger the opening procedure.

• Step 5: Wait for at least 2 clock periods of the mac_tx_clk.

• Step 6: De-assert the signal async_tcptx_open_in.

• Step 7: Verify the connection establishment status reported by the signal

tcptx_cntn_established_out. A timeout of several seconds can be implemented by

the user. Upon timeout, if the connection has not been established, go to the closing

procedure then restart all over again.

TCP Closing procedure
• Step 1: Assert the signal async_tcptx_abort_in. It is noted that this signal can be

asynchronous to the FPGA IP clocks.

• Step 2: Wait for at least 2 clock periods of the mac_tx_clk.

• Step 3: De-assert the signal async_tcptx_abort_in.

Sometimes in the client mode the TCP opening procedure can fail, resulting on a timeout

event described in Step 7 of the Opening procedure. This is mostly because the TCP Server's

MAC address is not known by the routing table. In such a case, the ARP-Cache component

will send out an ARP request to discover the Server machine. Normally, if the server is online

and responds to the ARP request, a second connection attempt should succeed.

PD001 - TCP-UDP-IP Stack 10G v2.0 – Product Datasheet. Version 1.0 Page 26

End Of Document.

